自然铜

首页 » 常识 » 问答 » 诺贝尔奖他们将化学带入功能主义新时代,还
TUhjnbcbe - 2024/3/31 16:33:00

年10月5日北京时间17时45分许,年诺贝尔化学奖授予美国学者卡罗琳·R.贝尔托西、丹麦学者莫滕·梅尔达尔、美国学者K.巴里·沙普利斯,以表彰他们“对点击化学和生物正交化学的发展”的贡献。

卡罗琳·R.贝尔托西(CarolynR.Bertozzi)年出生于美国。年在美国加利福尼亚大学伯克利分校获得博士学位。现任美国斯坦福大学AnneT.和RobertM.Bass教授。

莫滕·梅尔达尔(MortenMeldal)年出生于丹麦。年在丹麦技术大学获得博士学位。现任丹麦哥本哈根大学教授。

K.巴里·沙普利斯(K.BarrySharpless)年出生于美国宾夕法尼亚州费城。年获得美国斯坦福大学博士学位。现任美国斯克里普斯研究中心的W.M.Keck教授。他曾因“手性催化氧化反应”与另两名学者分享年诺贝尔化学奖。此次获奖令他成为继弗雷德里克·桑格(FrederickSanger,蛋白质测序和DNA测序开创者)后,第二位两次获得诺贝尔化学奖的科学家。

有时简单的答案是最好的。巴里·沙普利斯和莫滕·梅尔达尔将化学带入了功能主义时代,并为点击化学(clickchemistry)奠定了基础;他们与卡罗琳·R.贝尔托西分享了年诺贝尔化学奖,后者将点击化学带到了全新的维度,并开始使用这一工具来绘制细胞图谱。贝尔托西开发的生物正交反应已实现了多种应用,包括促进更有针对性的癌症疗法的开发。

自18世纪现代化学诞生以来,许多化学家都将自然作为研究的模仿对象。生命本身就是自然界拥有创造化学复杂性的至高能力的最好证明。在植物、微生物和动物中发现的惊人的分子结构,促使研究人员尝试通过人工合成来构建相同的分子。在药物开发中,模仿天然分子通常也是一个重要的部分,因为开发许多药物的灵感就来自天然的物质。

数个世纪以来积累的化学知识证明了其价值。利用开发出的复杂工具,化学家现在可以在实验室中创造出各种极其惊人的分子。然而,一个具有挑战性的问题是,复杂的分子必须通过许多步骤才能构建出来,每个步骤都会产生不需要的副产品——有时多,有时少。为了得到需要的化合物,在继续后续的反应工艺之前,这些副产品必须被清除。而对于那些合成难度大的化学结构,原料的损失可能极大,反应结束后产物几乎为零。化学家经常能实现具有挑战性的目标,但采用的路线可能既耗时又昂贵。年诺贝尔化学奖关乎于寻找新的理想的化学,让简单性和功能性优先。

化学进入功能主义新时代

巴里·沙普利斯获得了他的第二个诺贝尔化学奖。他是开始滚动雪球的第一人。大约在世纪之交时,他为一种功能性的化学创造了点击化学的概念。在点击化学中,分子模块能够快速有效地结合在一起。当莫滕·梅尔达尔和巴里·沙普利斯彼此独立地发现了点击化学皇冠上的明珠——铜催化叠氮化物-炔烃环加成反应(coppercatalysedazide-alkynecycloaddition)时,雪球变成了雪崩。

贝尔托西开发了可以应用于生物体内的点击反应。她研究的生物正交反应在生物体内应用时,可以不干扰细胞正常的化学过程,目前正在全球范围内用于绘制细胞的功能图谱。一些研究人员现在正在研究如何利用这些反应来诊断和治疗癌症。现在让我们来看看通往年诺贝尔化学奖的两条线索中的第一条。

化学家需要新理想

解开这条线索的时间始于年,巴里·沙普利斯在这一年获得了第一个诺贝尔化学奖。然而,当他在一本科学杂志上主张在化学中采用一种新的极简主义方法时,一切都还没有发生。他认为化学家是时候停止模仿天然分子了——这往往使得化学家遭遇难以驾驭的分子合成,而这也在新药研发中构成了障碍。

当在自然界中发现了一种潜在的药物时,化学家通常可以制造少量的该物质,并将其用于体外测试和临床试验。然后,如果后期需要工业生产,则需要达到更高的生产效率。沙普利斯使用一种强大的抗生素美罗培南(meropenem)作为例子——找到大规模生产这种分子的方法,全球的科学家大概花费了6年的研发时间。

“争吵”的分子,代价高昂

根据巴里·沙普利斯的说法,化学家的绊脚石之一是碳原子间形成的化学键,它对生命中的化学过程至关重要。原则上,所有生物分子都具有连接碳原子的框架。生命已经演化出创造这些物质的方法,但事实证明这对化学家来说是出了名的困难。原因是来自不同分子的碳原子之间通常缺乏形成键的化学驱动力,因此需要人工激活它们。这种活化通常会导致许多不必要的副反应和代价高昂的原料损失。

巴里·沙普利斯没有勉强碳原子相互发生反应,而是鼓励他的同事从已经具有完整碳骨架的较小分子开始。这些简单的分子可以通过更容易控制的氮桥或氧桥连接在一起。如果化学家选择简单的反应——分子结合在一起有很强的内在驱动力就会避免许多副反应,同时让原料损失降至最小。

点击化学——具有巨大潜力的实用绿色化学

巴里·沙普利斯称这种构建分子的鲁棒方法为“点击化学”,他认为,即使点击化学不能提供天然分子的精确副本,也有可能找到具有相同功能的分子。结合简单的化学砌块可以创造出几乎无穷无尽的分子,因此他相信点击化学可以产生与天然药物具有类似功能的新型药物,并且可以在工业规模下生产。

在年的著作中,巴里·沙普利斯列出了属于点击化学的化学反应应该满足的几个标准。其中之一是反应应该能够在氧气,以及廉价且环保的溶剂——水中发生。

他还列举了几个已有的化学反应例子,他认为这些反应实现了他提出的新理论。然而,当时还没有人知道现在几乎成为点击化学同义词的绝妙反应——铜催化的叠氮化物-炔烃环加成。这将在丹麦的一个实验室中被发现。

改变化学的点击反应

当铜离子加入后,叠氮化物和炔烃的反应变得极为高效。这种反应现在被广泛应用,来以简单的方式将分子连接在一起。

梅尔达尔反应容器中的意外之物

很多时候,决定性的科学进步发生在研究人员最意想不到的时刻,莫滕·梅尔达尔就遇到了这种情况。本世纪初,他正在开发寻找潜在药物的方法。他构建了巨大的分子库,其中可能包含数十万种不同的物质,然后对它们进行筛选,看它们中的任何一种是否可以阻断致病过程。

在这个过程中,他和同事在某一天进行了一种极为常规的反应。你不需要记住这一点,只要知道他们的目的是让炔烃(alkyne)与酰卤(acylhalide)反应。如果化学家添加一些铜离子,或许还有一小撮钯作为催化剂,反应通常会很顺利。但当梅尔达尔分析反应容器中发生了什么时,他发现了一些意想不到的事情。事实证明,炔烃与酰卤分子错误的一端发生了反应。在另一端是一个称为叠氮化物(azide)的化学基团(如上图所示)。叠氮化物与炔烃一起形成环状结构,即三唑(triazole)。

这个反应有点特别

懂一些化学的人可能都知道三唑的化学结构非常有用,它们结构十分稳定,往往会出现在一些药物、染料和农业化学品中。由于三唑是理想的化学结构单元,研究人员此前曾尝试用炔烃和叠氮化物来制造它们,但这会导致不必要的副产物。莫滕·梅尔达尔发现铜离子可以控制反应的进行,基本只得到一种产物,那些本应与炔烃键合的酰卤也或多或少没有发生什么反应。这在梅尔达尔看来,叠氮化物和炔烃之间会发生反应很明显是不同寻常的。

年6月,他在圣迭哥的一次研讨会上首次展示了他的发现。次年,也就是在年,他在一本学术期刊上发表了一篇文章,表示这种反应可用于将许多不同的分子结合在一起。

分子“啪嗒”一声,快速有效地结合在一起

同一年,巴里·沙普利斯(独立于莫滕·梅尔达尔)也发表了一篇用铜催化叠氮化物和炔烃发生反应的论文,这项研究表明该反应可在水中起作用并且是可靠的。他将其描述为“完美的”点击反应。叠氮化物就像一个被压紧的弹簧,其中的作用力由铜离子释放。这个过程很稳定,因此沙普利斯建议化学家使用该反应来连接不同的分子。他认为它的潜力十分巨大。回想起来,我们可以看出他是对的。现在,如果化学家想要连接两个不同的分子,他们就可以相对简单地使一个分子拥有一个叠氮基,同时在另一个分子中引入一个炔基。然后,在一些铜离子的帮助下,他们就可以将这两个分子结合在一起。

点击反应的简单性让它在实验室研究和工业生产中迅速流行了起来。而且,点击反应还有助于生产需要满足特定需求的新材料。例如,如果制造商在塑料或纺织品中添加了可发生点击反应的叠氮化物,那么后期的材料升级就变得很简单了,例如,这或许能使原料连接可导电、获取阳光、抗菌、防紫外线辐射或具有其他理想特性的物质,还可以通过点击反应,把软化剂固定在塑料中,来避免软化剂泄漏。在药物研究中,点击化学还可以用于生产和优化可能成为药物的物质。

有许多例子都可以说明点击反应的强大之处。然而,巴里·沙普利斯没有预料到的是,它会被用于生物领域。现在,让我们揭开年诺贝尔化学奖的第二条线索。

贝尔托西开始研究难以捉摸的碳水化合物

这条线索始于20世纪90年代,当时生物化学和分子生物学正在经历爆炸性的发展。利用分子生物学的新方法,世界各地的研究人员正在绘制基因和蛋白质图谱,试图了解细胞是如何工作的。那时的学界充满了开拓精神,每天都会出现未知领域的新知识。

然而,一组分子几乎没有受到任何

1
查看完整版本: 诺贝尔奖他们将化学带入功能主义新时代,还